Constrained Total Generalized p-Variation Minimization for Few-View X-Ray Computed Tomography Image Reconstruction.

نویسندگان

  • Hanming Zhang
  • Linyuan Wang
  • Bin Yan
  • Lei Li
  • Ailong Cai
  • Guoen Hu
چکیده

Total generalized variation (TGV)-based computed tomography (CT) image reconstruction, which utilizes high-order image derivatives, is superior to total variation-based methods in terms of the preservation of edge information and the suppression of unfavorable staircase effects. However, conventional TGV regularization employs l1-based form, which is not the most direct method for maximizing sparsity prior. In this study, we propose a total generalized p-variation (TGpV) regularization model to improve the sparsity exploitation of TGV and offer efficient solutions to few-view CT image reconstruction problems. To solve the nonconvex optimization problem of the TGpV minimization model, we then present an efficient iterative algorithm based on the alternating minimization of augmented Lagrangian function. All of the resulting subproblems decoupled by variable splitting admit explicit solutions by applying alternating minimization method and generalized p-shrinkage mapping. In addition, approximate solutions that can be easily performed and quickly calculated through fast Fourier transform are derived using the proximal point method to reduce the cost of inner subproblems. The accuracy and efficiency of the simulated and real data are qualitatively and quantitatively evaluated to validate the efficiency and feasibility of the proposed method. Overall, the proposed method exhibits reasonable performance and outperforms the original TGV-based method when applied to few-view problems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Constrained \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} }{}${\rm T}p{\rm V}$\end{document} Minimization for Enhanced Exploitation of Gradient Sparsity: Application to CT Image Reconstruction

Exploiting sparsity in the image gradient magnitude has proved to be an effective means for reducing the sampling rate in the projection view angle in computed tomography (CT). Most of the image reconstruction algorithms, developed for this purpose, solve a nonsmooth convex optimization problem involving the image total variation (TV). The TV seminorm is the `1 norm of the image gradient magnit...

متن کامل

Constrained TpV Minimization for Enhanced Exploitation of Gradient Sparsity: Application to CT Image Reconstruction.

Exploiting sparsity in the image gradient magnitude has proved to be an effective means for reducing the sampling rate in the projection view angle in computed tomography (CT). Most of the image reconstruction algorithms, developed for this purpose, solve a nonsmooth convex optimization problem involving the image total variation (TV). The TV seminorm is the ℓ1 norm of the image gradient magnit...

متن کامل

Distributed Reconstruction via Alternating Direction Method

With the development of compressive sensing theory, image reconstruction from few-view projections has received considerable research attentions in the field of computed tomography (CT). Total-variation- (TV-) based CT image reconstruction has been shown to be experimentally capable of producing accurate reconstructions from sparse-view data. In this study, a distributed reconstruction algorith...

متن کامل

Evaluation of sparse-view reconstruction from flat-panel-detector cone-beam CT.

Flat-panel-detector x-ray cone-beam computed tomography (CBCT) is used in a rapidly increasing host of imaging applications, including image-guided surgery and radiotherapy. The purpose of the work is to investigate and evaluate image reconstruction from data collected at projection views significantly fewer than what is used in current CBCT imaging. Specifically, we carried out imaging experim...

متن کامل

Improved total variation minimization method for few-view computed tomography image reconstruction

BACKGROUND Due to the harmful radiation dose effects for patients, minimizing the x-ray exposure risk has been an area of active research in medical computed tomography (CT) imaging. In CT, reducing the number of projection views is an effective means for reducing dose. The use of fewer projection views can also lead to a reduced imaging time and minimizing potential motion artifacts. However, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • PloS one

دوره 11 2  شماره 

صفحات  -

تاریخ انتشار 2016